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Disordered Markovian Brownian ratchets

Robert Alicki
Institute of Theoretical Physics and Astrophysics, University of Gdan´sk, Wita Stwosza 57, PL 80-952 Gdan´sk, Poland

~Received 10 May 1999!

A model of a Brownian ratchet coupled to a heat bath and driven by a nonequilibrium Poisson white noise
is discussed. The formula describing a generated current in terms of the statistical properties of a possible
irregular or random potential is derived within the small nonequilibrium noise approximation and illustrated by
a few concrete examples. The perturbation technique for Hilbert space operators is used as a mathematical tool.
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PACS number~s!: 05.40.Jc, 03.65.Ca, 87.10.1e
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Recently, different models of the so-called Browni
ratchets attracted attention and various mechanisms res
sible for their operation as ‘‘motors’’ converting nonequilib
rium noise into directed motion have been considered@1–9#.
We restrict our discussion to a class of models formally
scribed by the following one-dimensional Langevin equat
in the overdamped regime:

g ẋ5 f ~x!1G~ t !1F~ t !, ~1!

whereg is a friction constant,f (x) is a potential force@i.e.,
f 52(]/]x)V#, G(t) is a Gaussian white noise representi
thermal fluctuations at the temperatureT, and F(t) is an
external force modeling an interaction with the environm
being out of the thermal equilibrium. Different proposa
concerning the form ofF(t) including periodic in time de-
terministic forces@1,2#, various types of colored noises o
Gaussian and Poisson type@3–6#, and white Poisson noise
@7,8# have been analyzed numerically or analytically. In m
papers the potentialV(x) is periodic and the noise is sym
metric with respect to the reflectionx°2x and homoge-
neous. All authors agree that in this case the necessary
dition for the generation of a macroscopic current is a loss
symmetry of the potentialV(x). However, some author
claimed that the additional necessary condition was the p
ence of correlations forF(t), which means that the nonequ
librium random force could not be a white~generally non-
Gaussian! noise@1,4,7#. In other words, the non-Markovia
character of the stochastic processx(t) should be essentia
for the mechanism of current generation. On the contrary
Refs. @7,8# several special cases of models with piecew
linear periodic potentials and random forcesF(t) being Pois-
son white noise with a few selected simple forms of the ju
distribution proved to generate a net current.

The purpose of this paper is to provide analytical expr
sions describing the generated current which are valid fo
generic family of Brownian ratchets of the type~1! under the
assumption of weak nonequilibrium perturbation. We re
the condition of periodicity for the potentialV(x) allowing
its irregular character described by its statistical avera
properties. We assume that the random forceF(t) is a Pois-
son white noise symmetric with respect to the reflection a
homogeneous. Under the assumptions above the Lang
equation ~1! is completely equivalent to the following
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Chapman-Kolmogorov-Smoluchowski equation for the pro
ability distributionP(x,t) @10#:

]

]t
P~x,t !5D

]

]x F ]

]x
2

f ~x!

kT GP~x,t !

1lE
2`

`

r~z!@P~x2z,t !2P~x,t !#dz, ~2!

with the probability distribution of jumps

r~z!5r~2z!, r~z!>0, E
2`

`

r~z!dz51, ~3!

the average frequency of jumpsl, the diffusion constantD
5gkT, and the appropriate initial and boundary conditio
for P(x,t). Equation~2! can always be written as a continu
ity equation

]

]t
P~x,t !1

]

]x
J~x,t !50. ~4!

The currentJ(x,t) is a nonlocal functional ofP(x,t),

J~x,t !52DF ]

]x
2

f ~x!

kT GP~x,t !1lE
2`

`

G~x2y!P~y,t !dy,

~5!

with

G~z!5E
z

`

r~r !dr for z.0, G~2z!52G~z!. ~6!

The currentJ(x,t) is uniquely determined by the condition

lim
x→6`

J~x,t !50 if lim
x→6`

P~x,t !50. ~7!

In the following we shall apply quantum-mechanical-lik
perturbation techniques to the evolution equation~2! written
now in an operator form on the Hilbert spaceL2(R),

]

]t
c52 i K̂c. ~8!
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HereK̂ is a nonself-adjoint operator onL2(R) which can be
represented as a function of self-adjoint ‘‘momentum’’ a
‘‘position’’ operators

P̂c~x!52 i
]

]x
c~x!, Q̂c~x!5xc~x! ~9!

as

K̂52 iDP̂@ P̂1 iU 8~Q̂!#1 il@r̃~ P̂!21#. ~10!

In the formula~10!

U8~Q̂!52
1

kT
f ~Q̂! ~11!

andr̃ denotes the Fourier transform ofr. The operatorK̂ can
be expressed in terms of the current operatorĴ

Ĵ5 iDP̂2DU8~Q̂!1lG̃~ P̂!52 iDe2ÛP̂eÛ1lG̃~ P̂!,

K̂5 i P̂Ĵ. ~12!

In order to compute the stationary current in our system
shall use the approximative spectral resolution of the cur
operatorĴ. To simplify the problem we consider the diffu
sion process on the finite interval@0,L# with the periodic
boundary conditions. HereL is not a period of the potentia
as in many papers on Brownian ratchets but the total len
of the system which finally will tend to infinity. Hence th
Hilbert spaceL2(R) is replaced byL2(@0,L#) and we must
assume thatV(L)5V(0). Then the operatorsĴ andK̂ given
by Eqs.~12! are well defined onL2(@0,L#) and possess dis
crete spectra. The ‘‘momentum operator’’P̂ has the follow-
ing spectral representation:

P̂5 (
kPZ

S 2pk

L D ufk&^fku, fk~x!5
1

AL
expS i

2pkx

L D .

~13!

Using general Frobenius-Perron type arguments@11# one can
show that the stationary equation

K̂c50 ~14!

possesses a unique solutionc0 which can be chosen positiv
and satisfying the normalization condition

E
0

L

c0~x!dx5L5AL^f0 ,c0&. ~15!

With the above normalization we obtain from Eqs.~4!, ~5!,
and ~12! the formula for the normalized stationary curren

j 5Ĵc05 jALf0 , c05 jALĴ21f0 ~16!

and finally using Eq.~15!

j 5~^f0 ,Ĵ21f0&!21. ~17!
e
nt

th

We apply now the standard quantum-mechanical pertu
tion technique with respect to the small parameterl/D. Us-
ing Eq. ~12! we can write

Ĵ215D21e2ÛR̂21eÛ, ~18!

with

R̂52 i P̂1
l

D
eÛG̃~ P̂!e2Û. ~19!

In the lowest order approximation with respect tol/D the
eigenvectors ofR̂ coincide with the eigenvectors ofP̂ and
the eigenvalues acquire the first order correction produc
the following approximative expression

R̂. (
kPZ

S 2
i2pk

L
1

l

D
GkD ufk&^fku, ~20!

with

Gk5^fk ,eÛG̃~ P̂!e2Ûfk&. ~21!

Putting the inverse ofR̂ into Eq. ~18! and then into Eq.~17!
one can notice that the leading term is given by a single te
with k50 in the sum~20!. Therefore we obtain the following
approximative formula for the net current:

j .lG0~Z2Z1!21. ~22!

The parameters which appear in Eq.~22! can be rewritten for
largeL in terms of certain averages over the system

G05 lim
L→`

1

LE0

L

dxE
0

L

dyG~x2y!e[U(x)2U(y)]

52E
0

`

dzG~z!H lim
L→`

1

LE0

L

sinh@U~z1x!2U~x!#dxJ
~23!

Z65^f0 ,e6Ûf0&5 lim
L→`

1

LE0

L

dxe6U(x). ~24!

The averages overx in Eqs.~23! and~24! can be replaced by
the averages with respect to a certain ensemble of poten
~random potential model! denoted bŷ &,

G0522E
0

`

dzG~z!K sinhF 1

kTE0

z

f ~x!dxG L ,

Z65 K expH 6
1

kT
VJ L . ~25!

It follows from formulas~22! and~25! that a nonzero curren
appears if the distribution of the forcef (x) is not symmetric
with respect to the change of its sign~ratchetlike potential!.
Remembering that the average force should be zero^ f &
50) the leading term in the high temperature limit is giv
by
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j .2
l

3~kT!3E
0

`

dzG~z!K F E
0

z

f ~x!dxG3L . ~26!

It means that the current flows in the direction of a stee
climb and its value decreases asymptotically when the t
perature grows. More explicit expression for the current c
be obtained under the assumption that the average j
length is smaller than the typical length scale of the forc
variation. It follows that in formula~25! we can use the
estimation

E
0

z

f ~x!dx. f ~0!z. ~27!

Therefore the current~22! can be written in terms of the
three probability distributions:r(z) for the jumps,m( f ) for
the force, andn(V) for the potential

G052kTE
2`

1`

d fE
2`

1`

dzm~ f !r~z! f 21FcoshS f z

kTD21G ,
~28!

Z65E
2`

1`

dVn~V!expH 6
V

kTJ . ~29!

As the forcef is related to the potentialV then in principle
the probability distributionsm( f ) and n(V) might not be
independent. On the other hand,m( f ),n(V) do not contain
any information about the correlations off (x) and V(x) at
different points and therefore the only consistency condit
is ^ f &50, which is implied byV(0)5V(L). The obtained
formulas can be illustrated by the following examples
volving concrete probability distributions:

r (1)~z!5H 1

2a
if uzu<a

0 otherwise ,

r (2)~z!5
1

aA2p
e2z2/2a2

~30!

n (1)~V!5H 1

2V0
if uVu<V0

0 otherwise ,

n (2)~V!5
1

V0A2p
e2V2/2V0

2
.

~31!

For the probability distribution off we select a very simple
one corresponding to a piecewise linear ‘‘saw shape’’ pot
tial with possible different~random! sizes of the teeth
r
-

n
p

s

n

-

-

m~ f !5
12e

2
d„f 1~11e! f 0…1

11e

2
d„f 2~12e! f 0…,

~32!

where the parametereP(21,1) describes the asymmetry o
the force distribution. In the small asymmetry regim
(ueu!1) we obtain from Eqs.~28!, ~29!, and~32! the expres-
sion for the current

j .elkTS C8~ f 0!2
2

f 0
C~ f 0! DR, ~33!

whereR5(Z2Z1)21 and

C~ f !5E
2`

1`

dzr~z!FcoshS f z

kTD21G . ~34!

For the probability distributions~30! and ~31! we have

C (1)~ f !5
kT

a f
sinh

a f

kT
21, C (2)~ f !5expH 1

2 S a f

kTD 2J 21,

~35!

R(1)5S V0

kTD 2

sinh22S V0

kTD , R(2)5expH 2S V0

kTD 2J .

~36!

The high temperature regime~26! yields now the following
result:

j .elaS f 0a

kT D 3

c, ~37!

wherec5 1
60 for r (1) andc5 1

8 for r (2), respectively.
The low temperature regime together with the assump

~27! means that

kT!a f0!V0 . ~38!

The asymptotic forms of the current at low temperatu
small asymmetry, and weak nonequilibrium noise calcula
with the probability distributions~30!–~32! read
j .5
elaS kT

f 0aD S V0

kTD 2

expH 2
1

kT
~2V02 f 0a!J for r (1),n (1)

elaS kT

f 0aDexpH 2S V0

kTD 2

1
f 0a

kT J for r (1),n (2)

elaS f 0a

kT D S V0

kTD 2

expH 1

2 S f 0a

kT D 2

2
V0

kTJ for r (2),n (1)

elaS f 0a

kT DexpH 2S V0

kTD 2

1
1

2 S f 0a

kT D 2J for r (2),n (2)

~39!

~40!

~41!

~42!
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The examples above show that in contrast to the high t
perature behavior~26! and ~37!, which is rather universal
the moderate and low temperature ones depend on the d
of the probability distributionsr,m,n. Typically, one can
expect the existence of the optimal temperature for which
generated current has at least a local maximum. Such
nomena can be important in biophysical applications of
theory.

Summarizing, we have confirmed in a more general s
ting the prediction of Refs.@8,9# that a white Poisson nois
can generate current in systems modeled by Brownian ra
ets. Moreover, we can deduce the following rough dep
dence of the current on the fundamental parameters: the
peratureT, the asymmetry of the forcee, the typical potential
ev
-

ails

e
e-
e

t-

h-
-

m-

variation V0, the length scalel 0 of the potential variation
~defined byf 0l 05V0), the average jump frequencyl, and
the typical jump lengtha,

j .elaHS a

l 0
,
V0

kTD . ~43!

Here the functionH(a,b) depends on the details of th
model but fora,b5O(1) we expectH(a,b)5O(1) while
for b→0, H(a,b);(ab)3.
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