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Disordered Markovian Brownian ratchets

Robert Alicki
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A model of a Brownian ratchet coupled to a heat bath and driven by a nonequilibrium Poisson white noise
is discussed. The formula describing a generated current in terms of the statistical properties of a possible
irregular or random potential is derived within the small nonequilibrium noise approximation and illustrated by
a few concrete examples. The perturbation technique for Hilbert space operators is used as a mathematical tool.
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Recently, different models of the so-called Brownian Chapman-Kolmogorov-Smoluchowski equation for the prob-
ratchets attracted attention and various mechanisms respoability distribution P(x,t) [10]:
sible for their operation as “motors” converting nonequilib-
rium noise into directed motion have been considé¢feed].
We restrict our discussion to a class of models formally de-
scribed by the following one-dimensional Langevin equation

in the overdamped regime: +}\j p(D[P(x—2)—P(x.D]dz,  (2)

d f(x)
ax kT |POeD

aP t D(y
g (x,t)= X

P=T)+TO+F(), @D with the probability distribution of jumps

wherey is a friction constantf(x) is a potential forcéi.e., %
f=—(alox)V], I'(t) is a Gaussian white noise representing p(2)=p(-2), p(2=0, J%P(Z)dzz 1, ©®
thermal fluctuations at the temperatufe and F(t) is an

external force modeling an interaction with the environmenty, average frequency of jumps the diffusion constanb
being out of the thermal equilibrium. Different proposals = kT, and the appropriate initial and boundary conditions

concerning the form of(t) including periodic in time de- ¢, P(x,t). Equation(2) can always be written as a continu-
terministic forces[1,2], various types of colored noises of ity equation

Gaussian and Poisson typg-6], and white Poisson noises
[7,8] have been analyzed numerically or analytically. In most 9 9
papers the potentiaf (x) is periodic and the noise is sym- EP(x,t)vL &J(x,t)=0. 4
metric with respect to the reflection— —x and homoge-
neous. All authors agree that in this case the necessary co
dition for the generation of a macroscopic current is a loss o
symmetry of the potentiaV(x). However, some authors
claimed that the additional necessary condition was the presj(x,t)= —D| — — ——
ence of correlations fdf(t), which means that the nonequi- ox KT
librium random force could not be a whifgenerally non- 5
Gaussiahnoise[1,4,7]. In other words, the non-Markovian
character of the stochastic proceq$) should be essential
for the mechanism of current generation. On the contrary, in
Refs.[7,8] several special cases of models with piecewise G(z)= Jmp(r)dr for z>0, G(—2)=-G(z). (6)
linear periodic potentials and random for¢g&) being Pois-

son white noise with a few selected simple forms of the jump

?he current(x,t) is a nonlocal functional oP(x,t),

Jd  f(x)

P(x,t)+)\J'me(x—y)P(y,t)dy,

with

z

distribution proved to generate a net current. The currentd(x,t) is uniquely determined by the condition
The purpose of this paper is to provide analytical expres-

sions describing the generated current which are valid for a lim J(x,t)=0 if lim P(x,t)=0. (7

generic family of Brownian ratchets of the ty® under the X— Lo X— Feo

assumption of weak nonequilibrium perturbation. We relax _ o

the condition of periodicity for the potential(x) allowing In the following we shall apply quantum-mechanical-like

its irregular character described by its statistical average@erturbation techniques to the evolution equati@nwritten
properties. We assume that the random fd#¢8) is a Pois- NOW in an operator form on the Hilbert spac&(R),

son white noise symmetric with respect to the reflection and

homogeneous. Under the assumptions above the Langevin ill/:—ifclﬂ )
equation (1) is completely equivalent to the following at '
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HereK is a nonself-adjoint operator drf(R) which can be
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We apply now the standard quantum-mechanical perturba-

represented as a function of self-adjoint “momentum” andtion technique with respect to the small parametéd. Us-

“position” operators

ﬁw(x>=—i%w<x>, Qu(x)=xy(x) (9)
as
K=—iDP[P+iU'(Q)]+iN[p(P)—1]. (10
In the formula(10)
U'<©>=—k—1Tf<©> (11)

andp denotes the Fourier transform pf The operatoK can
be expressed in terms of the current operafor

J=iDP—DU'(Q)+\G(P)=—iDe YPel+\G(P),

K=iPT. (12)

In order to compute the stationary current in our system w
shall use the approximative spectral resolution of the current

operator.7. To simplify the problem we consider the diffu-

sion process on the finite intervgD,L] with the periodic

e

ing Eq. (12) we can write

7 1l=p-le VR 1eY, (18)

with

R D P
R=—|P+BeUG(P)e’U. (19
In the lowest order approximation with respectitD the
eigenvectors ofR coincide with the eigenvectors &f and

the eigenvalues acquire the first order correction producing
the following approximative expression

R i2mk N
R:gz (_T+5Fk)|¢k><¢k|1 (20
with
= (¢.e"G(P)e V). 21)

Putting the inverse oR into Eqg.(18) and then into Eq(17)

ne can notice that the leading term is given by a single term
with k=0 in the sum20). Therefore we obtain the following
approximative formula for the net current:

boundary conditions. Herk is not a period of the potential
as in many papers on Brownian ratchets but the total length
of the system which finally will tend to infinity. Hence the The parameters which appear in E22) can be rewritten for

j=\l'y(Z_Z,) L. (22

Hilbert spacel2(R) is replaced byL2([0,.L]) and we must
assume tha¥(L) =V(0). Then the operators andK given

by Egs.(12) are well defined o.2([0,L]) and possess dis-

crete spectra. The “momentum operatd?’has the follow-
ing spectral representation:

2mkx

1
oo S22

13

b=,
kez

€

2k
T) | P D

Using general Frobenius-Perron type argumghts one can
show that the stationary equation

Ky=0 (14)

possesses a unique solutigp which can be chosen positive

and satisfying the normalization condition

L
JO Yo(x)dx=L=L(eo, o). (15)

With the above normalization we obtain from Ed@4), (5),
and (12) the formula for the normalized stationary current

j=Tho=iVLebo, do=iNLT ‘oo (16)
and finally using Eq(15)
=0, T o))" (17

largeL in terms of certain averages over the system

1L L
I'y= lim —f dxf dyG(X_y)e[U(X)*U(Y)]
LJo 0

L—oo

” 1
_zfo de(z)[LIEanJ' S|ni{U(z+x)—U(x)]dx]

0

(23

N 1L
Z.=(¢o,e" )= "mffo dxe™V™, (24)

L—oo

The averages overin Egs.(23) and(24) can be replaced by
the averages with respect to a certain ensemble of potentials
(random potential modgdenoted by ),

Iy= —Zf:dz(z(z)<sinr{ki_rfozf(x)dx

2o =)

It follows from formulas(22) and(25) that a nonzero current
appears if the distribution of the fordéx) is not symmetric
with respect to the change of its sigratchetlike potential
Remembering that the average force should be zéfp (
=0) the leading term in the high temperature limit is given

by

(25
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3 1-€ 1+e€
>. (26) ,u,(f)=75(f+(1+e)fo)+ Tﬁ(f—(l—s)fo),
(32

f:f(x)dx

It means that the current flows in the direction of a steeper

climb and its value decreases asymptotically when the temyhere the parametere (—1,1) describes the asymmetry of
perature grows. More explicit expression for the current canhe force distribution. In the small asymmetry regime
be obtained under the assumption that the average jumge|<1) we obtain from Eqs(28), (29), and(32) the expres-
length is smaller than the typical length scale of the force’ssjon for the current

variation. It follows that in formula(25 we can use the

estimation

R
=~ 37 dZG(Z)<

j=e\kT \I”(fo)—fi‘lf(fo))R, (33
0

fzf(x)dx:f(O)z. (27
0
whereR=(Z_z,) ! and

Therefore the current22) can be written in terms of the
three probability distributionsp(z) for the jumps,u(f) for

the force, andv(V) for the potential V()= fdep(z) cos?‘(é—i) _1}. (34)
+ o +
r =—kTJ dff dzu(f)p(z)f 1 cosr(—)—l},
0 —o —o w(h)el KT For the probability distribution$30) and(31) we have
(28)
o0 V " kT . af @ 1/af\?
fo dVv(V)exprik—T]. 29 V()= _sinh -1, W) =exp 5|15 (—1,

As the forcef is related to the potential then in principle
the probability distributionsu(f) and »(V) might not be VAY: vV Va2
independent. On the other hand(f),»(V) do not contain R(l):(—o) sinh2<—°>, R(Z)zexpl' —(-0) .
any information about the correlations bfx) andV(x) at

different points and therefore the only consistency condition

is (f)=0, which is implied byV(0)=V(L). The obtained _ _ . .
formulas can be illustrated by the following examples in-1he high temperature regim@6) yields now the following
volving concrete probability distributions: result:

(36)

3

c, (37

foa

kT

— if |z]=a 1 _ .
M(z)={ 2a @)(7)= —2°/2a j=e€\a
p(2) p'(2) e
a\2m

0 otherwise ,

B0 wherec=2 for p andc=1 for p®, respectively.
1 The low temperature regime together with the assumption
— if |V|=sV (27) means that
Vv ={ 2V, IVI=Vo V@) = ﬁe—VZ/ZVS_
. 0 o
0 otherwise, - kT<afy<Vo. (39)

For the probability distribution of we select a very simple The asymptotic forms of the current at low temperature,
one corresponding to a piecewise linear “saw shape” potensmall asymmetry, and weak nonequilibrium noise calculated

tial with possible differentrandom sizes of the teeth with the probability distribution$30)—(32) read
( KT\ [Vo)? 1
|| —= _ _ for (1), (1)
N falkT ex”[ kT(2Vo foa)] e (39)
KT V|2 foa
— B I for pM), @
- e\a foa exp[ (kT) + KT or p*,v (40)
I= 2 2
foal( Vo 1/fea Vo
— || —= = - for (2)’ (1)
eAa| JT kT) eXp[z kT kT Py (41)
foa Vo\2 1(fsa)\?
— | = | == for (2), (2) 42
\eka KT exp[ (kT) +2 KT p v (42)
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The examples above show that in contrast to the high temvariation V,, the length scalé, of the potential variation
perature behaviof26) and (37), which is rather universal, (defined byfyl,=V,), the average jump frequenay, and
the moderate and low temperature ones depend on the detaile typical jump lengtta,

of the probability distributionsp, u,v. Typically, one can

expect the existence of the optimal temperature for which the ] a V

generated current has at least a local maximum. Such phe- J=eNaH I_’k_T)' (43)
nomena can be important in biophysical applications of the 0

theory.

Here the functionH(«,B8) depends on the details of the

Summarizing, we have confirmed in a more general set- _ _ ;
ting the prediction of Refd.8,9] that a white Poisson noise g?%eL%UIlf'()(fgw?igswe expect(a, £)=0(1) while

can generate current in systems modeled by Brownian ratch-
ets. Moreover, we can deduce the following rough depen- The work was supported by the Polish Committee for
dence of the current on the fundamental parameters: the terGcientific ResearcHKBN), Grant No. UG BW 5400-5-
peraturel, the asymmetry of the force the typical potential 0201-8.
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